.. _seg_process: cvpl_tools/im/seg_process.py ============================ View source at `seg_process.py `_. Q: Why are there two baseclasses :code:`SegProcess` and :code:`BlockToBlockProcess`? When I define my own pipeline, which class should I be subclassing from? A: :code:`BlockToBlockProcess` is a wrapper around :code:`SegProcess` for code whose input and output block sizes are the same. For general processing whose output are list of centroids, or when input shape of any block is not the same as output shape of that block, use :code:`BlockToBlockProcess`. .. rubric:: APIs .. autofunction:: cvpl_tools.im.process.base.block_to_block_forward .. autofunction:: cvpl_tools.im.process.base.lc_interpretable_napari .. rubric:: Built-in function processes .. autofunction:: cvpl_tools.im.process.base.in_to_bs_custom .. autofunction:: cvpl_tools.im.process.base.in_to_bs_simple_threshold .. autofunction:: cvpl_tools.im.process.base.in_to_lc_blobdog_forward .. autofunction:: cvpl_tools.im.process.base.in_to_cc_sum_scaled_intensity .. autofunction:: cvpl_tools.im.process.base.bs_lc_to_os_forward bs_to_os ******** binary segmentation to ordinal segmentation This section contains algorithms whose input is binary (0-1) segmentation mask, and output is instance segmentation (0-N) integer mask where the output ndarray is of the same shape as input. .. autofunction:: cvpl_tools.im.process.bs_to_os.bs_to_os_watershed3sizes lc_to_cc ******** list of centroids to cell counts This section contains algorithms whose input is a 2d array or a 2d array of each block describing the centroid locations and meta information about the objects associated with the centroids in each block. The output is a single number summarizing statistics for each block. .. autofunction:: cvpl_tools.im.process.lc_to_cc.lc_to_cc_count_lc_by_size .. autofunction:: cvpl_tools.im.process.lc_to_cc.lc_to_cc_count_lc_edge_penalized os_to_cc ******** oridnal segmentation to cell counts This section contains algorithms whose input is instance segmentation (0-N) integer mask where the output is a single number summarizing statistics for each block. .. autofunction:: cvpl_tools.im.process.os_to_cc.os_to_cc_count_os_by_size os_to_lc ******** ordinal segmentation to list of centroids This section contains algorithms whose input is instance segmentation (0-N) integer mask where the output is a list of centroids with meta information. .. autofunction:: cvpl_tools.im.process.os_to_lc.os_to_lc_direct any_to_any ********** other This sections contain image processing steps whose inputs and outputs may adapt to different types of data or are not adequately described by the current classifications.