Quickstart

Installation

Create an Anaconda environment, and install torch (with GPU if you need training besides prediction). Check the following environment are installed as well (below list is for cvpl_tools version 0.8.2; also use Python 3.11 if you are working with SPIMquant environment):

python = ">=3.9"
numpy = ">=1.23"
nibabel = ">=5.2.1"
pillow = ">=7.1.0"
scipy = ">=1.12.0"
matplotlib = ">=3.9"
scikit-image = ">=0.22.0"
napari = ">=0.4.19"
zarr = ">=2.17.0"
dask = ">=2024.2.0"
dask-image = ">=2024.5.3"
ome-zarr = ">=0.9.0"
fsspec = ">=2024.6.1"
nnunetv2 = ">=2.5.1"

Then pip install cvpl_tools to finish the installation.

OME ZARR

Create an example OME ZARR, write it to disk and read back:

import dask.array as da
import cvpl_tools.ome_zarr.io as ome_io
import napari
import numpy as np
import asyncio

viewer = napari.Viewer(ndisplay=2)
da_array = da.from_array(np.arange(16).reshape((4, 4)))
print(f'print array:\n{da_array.compute()}')
asyncio.run(ome_io.write_ome_zarr_image('test.ome.zarr', da_arr=da_array))
read_back = ome_io.load_dask_array_from_path('test.ome.zarr', mode='r', level=0)  # always use level=0 for original resolution
print(f'read back:\n{read_back.compute()}')  # should print the same content
viewer.add_image(read_back, contrast_limits=[0, 15])
viewer.show(block=True)

Read and write can be done on network location. An example of read and display:

import cvpl_tools.ome_zarr.io as ome_io
import cvpl_tools.ome_zarr.napari.add as nadd  # read but only for display purpose
import napari

viewer = napari.Viewer(ndisplay=2)
OME_ZARR_PATH = 'gcs://khanlab-lightsheet/data/mouse_appmaptapoe/bids/sub-F1A1Te4/micr/sub-F1A1Te4_sample-brain_acq-blaze_SPIM.ome.zarr'
read_back = ome_io.load_dask_array_from_path(OME_ZARR_PATH, mode='r', level=0)
print(f'read back shape:{read_back.shape}')  # Reading metadata
nadd.group_from_path(viewer, OME_ZARR_PATH)
viewer.show(block=True)  # Displaying the image in Napari

nn-UNet

Download the training (o22)/testing (o23) annotations from Google Drive as follows:

  1. o22

  2. o23

Put the canvas_o22.tiff file in the same folder as below script. Then pair o22 annotation tiff file with the corresponding training input image volume and start training:

from cvpl_tools.examples.mousebrain_processing import mousebrain_processing, get_subject
import cvpl_tools.nnunet.triplanar as triplanar

SUBJECT_ID = 'o22'
SUBJECTS_DIR = f'subjects'
NNUNET_CACHE_DIR = f'nnunet_250epoch'
GCS_PARENT_PATH = 'gcs://khanlab-scratch/tmp'
subject = get_subject(SUBJECT_ID, SUBJECTS_DIR, NNUNET_CACHE_DIR, GCS_PARENT_PATH)
mousebrain_processing(subject=subject, run_nnunet=False, run_coiled_process=False)

train_args = {
    "cache_url": NNUNET_CACHE_DIR,
    "train_im": subject.SECOND_DOWNSAMPLE_CORR_PATH,  # image
    "train_seg": 'canvas_o22.tiff',  # label
    "nepoch": 250,
    "stack_channels": 0,
    "triplanar": False,
    "dataset_id": 1,
    "fold": '0',
    "max_threshold": 7500.,
}
triplanar.train_triplanar(train_args)

When training is finished, you can start predicting on the o23 image volume and compare the results. Training may take several hours, and if you want to skip this step, then you can download the result model from Zenodo and extract the folder to rename it as 'nnunet_250epoch'. Prediction code is as follows:

from cvpl_tools.examples.mousebrain_processing import mousebrain_processing, get_subject
import cvpl_tools.nnunet.triplanar as triplanar

SUBJECT_ID = 'o23'  # now predict on o23
SUBJECTS_DIR = f'subjects'
NNUNET_CACHE_DIR = f'nnunet_250epoch'
GCS_PARENT_PATH = 'gcs://khanlab-scratch/tmp'
subject = get_subject(SUBJECT_ID, SUBJECTS_DIR, NNUNET_CACHE_DIR, GCS_PARENT_PATH)
mousebrain_processing(subject=subject, run_nnunet=False, run_coiled_process=False)

pred_args = {
    "cache_url": NNUNET_CACHE_DIR,
    "test_im": subject.SECOND_DOWNSAMPLE_CORR_PATH,
    "test_seg": None,
    "output": 'canvas_o23_pred.tiff',
    "dataset_id": 1,
    "fold": '0',
    "triplanar": False,
    "penalize_edge": False,
    "weights": None,
}
triplanar.predict_triplanar(pred_args)

After prediction, load up two tiffs and compute an overlap measure like IOU or DICE score:

import tifffile
import napari
import cvpl_tools.ome_zarr.napari.add as nadd

mask_manual = tifffile.imread('canvas_o23.tiff') > 0
mask_pred = tifffile.imread('canvas_o23_pred.tiff') > 0
intersect = mask_manual & mask_pred
dice = intersect.sum().astype(np.float64) * 2 / (mask_manual.sum() + mask_pred.sum())
print(f'DICE score obtained: {dice.item(): .4f}')

# display the results in napari
viewer = napari.Viewer()
nadd.group_from_path(viewer, subject.SECOND_DOWNSAMPLE_CORR_PATH, kwargs=dict(name='image_volume'))
viewer.add_labels(mask_manual, name='mask_manual')
viewer.add_labels(mask_pred, name='mask_predicted')
viewer.show(block=True)